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Abstract

An acronym can be viewed as a word which is constructed
by taking initial components from a phrase. This study
deals with the problem of identification and extraction of
an acronym’s short and long-form. The proposed approach
solves the Acronym Identification (AI) task mentioned in the
scientific document understanding (SDU@AAAI-21) task.
This paper model the Acronym identification task as the sen-
tence level sequence-labeling problem. The proposed method
is computed by an ensemble of various Language Models
trained by hyper-parameter tuning. This ensembling tech-
nique is then coupled with post-processing steps to extract
the best possible predictions. The trained model’s perfor-
mance is evaluated against standard evaluation metrics such
as precision, recall, and F1-score. The final model achieves
an F1 score of 95.60%, a precision of 93.97%, and a recall of
97.95% on the development dataset. On the test data, the pro-
posed model achieves an F1 score of 92.08%, a precision of
89.70%, and the highest recall of 94.59%, compared to other
participants results in the competition.

Introduction
The acronyms in the technical/scientific domain are increas-
ing at an exponential rate. This is due to a huge amount of
research conducted in the technical and non-technical do-
mains. The term “acronym” is defined as the name given to
a particular word or a phrase by taking the first letters of
each word of a phrase (Mack 2012). For example, ‘ANN’ is
an acronym that stands for ‘Artificial Neural Network’. The
more common or general term used is “abbreviation”. Ab-
breviations encompass acronyms and few abbreviations that
use letters other than initial characters of phrases, such as
‘Mr.’ for ‘Ministers’. Hence, there is a thin line that distin-
guishes acronyms from abbreviations. The acronyms serve
a vital role in writing science or research-related technical
documents, patents, etc., by preventing content repetition.
This enables speeding the reading process and paving the
way for an easier understanding of the content written in-
side a document.

Several techniques have been proposed to extract
acronyms from a given input text corpus. These systems are
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rule-based(Schwartz and Hearst 2002) or machine learning-
based(Jacobs, Itai, and Wintner 2020; Kuo et al. 2009;
Liu, Liu, and Huang 2017). Some techniques use word-
embedding techniques (Kirchhoff and Turner 2016) to ex-
tract acronyms. There are several packages available in
python (Cook 2019; Schwartz and Hearst 2002) which ex-
tract acronyms and their expansions. The understanding of
acronyms and their expansions is an important task in the
following use-cases:

• Text understanding: There can be multiple expansions of
an acronym. Hence, identification of correct contextual
meaning is important to understand the text in an unam-
biguous manner.

• Information retrieval: When a document is queried by in-
putting a query containing an acronym, the results should
contain the relevant results.

• Machine translation: Acronyms posses a big challenge
when translating a source language to its target language.

• Text Summarization: It is advisable to use an acronym
counterpart of its expansion to summarize the text.

Figure 1: Examples of Acronym Identification

This paper presents an effective ensembling based ap-
proach to automatically extract acronyms along with their
extended/long-forms. The proposed approach combines en-
sembling Language Models + hyper-parameter tuning +
post-processing to get the best possible results. This paper is
structured by giving a survey of related work where a quick
brief about existing approaches used to solve the problem of
Acronym Identification (Veyseh et al. 2020a) is given. After



the related work section, an in-depth explanation of the pro-
posed system architecture is discussed. A thorough compar-
ative analysis of results on different scenarios is explained in
the section results and discussions. Finally, this paper con-
cludes by giving a quick conclusion and future directions.

Related Work
The existing Acronym Identification systems can be broadly
classified into rule-based, features & machine learning-
based and Deep Learning-based as depicted in figure 2. The
rule-based systems mainly consist of techniques that use
rules, patterns and regular expressions to extract acronyms
and their expansions. The machine learning-based tech-
niques first extract features required for Acronym Identifi-
cation, and then a classifier (like Support Vector Machine,
Conditional Random Fields) is trained over these features.
The Deep Learning-based techniques use state-of-the-art
algorithms like Recurrent Neural Networks (RNN), Long
Short Term Memory (LSTM), transformer-based models,
etc.

Figure 2: Acronym Identification Systems Broad Classifica-
tion

The Acronym Identification techniques can be traced back
to the year 1999 where (Taghva and Gilbreth 1999) pro-
posed a system named as Acronym Finding Program (AFP).
It is a simple regex-based system that identified candi-
date acronyms (upper-case words of three to ten grams).
It attempts to find acronym expansion by scanning a 2n-
window (n: number of letters in candidate acronyms). The
final system was evaluated on 1328 files. Many regex-based
Acronym Identification systems were proposed afterward.
The issue with regex-based techniques was that it is impossi-
ble to incorporate all the possible rules, and it required more
manual work to identify patterns and then to write rules.

A popular approach to detect acronyms was proposed
by (Schwartz and Hearst 2002)1. This technique is capa-
ble of extracting complicated acronyms, and it’s expansions.
It works in two stages. The first stage identifies candidate
acronyms by using predefined patterns (“acronym” and “ex-
pansion” and vice-versa). In the second stage, the overlap-
ping characters in an acronym and expansion are counted,
and finally, this count is compared to a specified thresh-
old. As this technique cannot store contextual information,
it failed to extract acronyms and their expansions with long-
term dependencies.

1https://github.com/philgooch/abbreviation-extraction

One of the machine learning-based Acronym Identifica-
tion systems proposed by (Kuo et al. 2009) extracts features
and then uses various algorithms like Support Vector Ma-
chine, Naive Bayes, Logistic Regression, and Monte-Carlo
Sampling Logistic Regression for training.

(Liu, Liu, and Huang 2017) proposed a Latent-state
Neural Conditional Random Fields model (LNCRF) sys-
tem which couples Conditional Random Fields with nonlin-
ear hidden layers. This system models the task of Acronym
Identification as a sequence labeling problem, and it sur-
passes many baseline models that were in existence at that
time.

A machine learning-based approach proposed by (Jacobs,
Itai, and Wintner 2020) aims to extract acronyms by au-
tomatically building an acronym-based dictionary from an
unannotated dataset. One of the critical parts of this system
is that it is capable of extracting non-local acronyms too. It
means extracting the expanded form of an acronym even if
the short form is not present in a given sentence.

Another approach that utilizes Long Short Term Mem-
ory - Conditional Random Field (LSTM-CRF) proposed
by (Veyseh et al. 2020b) provides an in-depth explanation
about overall Acronym identification and Disambiguation
implementations.

The rule-based and machine learning-based models were
not able to capture the contextual information. An acronym
extraction system that uses machine learning combined with
a neural network based-contextual model was proposed
by (Kirchhoff and Turner 2016). This model can store con-
textual information and hence can also be used to solve the
task of acronym disambiguation.

Effective Ensembling of Language Models for
Sequence Labeling Problem: EELM-SLP

The proposed system architecture is depicted in figure 3.
The main components of Effective Ensembling of Language
Models for Sequence Labeling Problem (EELM-SLP) Sys-
tem Architecture are as follows:

1. Data Acquisition/Collection.

2. Finetuning of transformer-based Language Models for
sequence-labeling task.

3. Hyperparameter tuning and retraining of Language Mod-
els.

4. Ensembling and postprocessing to obtain final predic-
tions.

5. Evaluation on development and test datasets.

Data Acquisition/Collection
The entire data can be downloaded from https://github.
com/amirveyseh/AAAI-21-SDU-shared-task-1-AI. A sam-
ple snapshot of the data is depicted in figure 1. The data
is bifurcated into training, development, and test data. The
training dataset consists of 14006 labeled sentences (Vey-
seh et al. 2020b). The development data consists of 1717 la-
beled sentences. Each datapoint in train and test data has ‘id’
representing train or development datapoint ID, ‘tokens’, a
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Figure 3: Effective Ensembling of Language Models for Sequence Labeling Problem (EELM-SLP) System Architecture

list containing the sentence split into individual tokens, and
‘labels’ are the token-wise annotations for the tokens asso-
ciated with them. The test dataset consists of about 1750
datapoints where only ‘id’ and ‘tokens’ are provided. The
‘labels’ depict the short and long-form acronyms in BIO for-
mat (short for inside, outside, beginning). B-long, I-long, B-
short, and I-short are the labels used.

Finetuning of transformer-based Language Models
for sequence-labeling task.
The proposed approach uses six transformer-based pre-
trained Language Models, who are fined tuned on a down-
stream sequence labeling task. The following Language
Models are used: BERT (Devlin et al. 2018), RoBERTa (Liu
et al. 2019), XLM-RoBERTa (Conneau et al. 2019),
CamemBERT (Martin et al. 2019), Longformer (Beltagy,
Peters, and Cohan 2020) and DistilBERT (Sanh et al. 2019).
BERT is trained with the objective of masked language mod-
eling (MLM) and the next sentence prediction (NSP). For
BERT, RoBERTa, XLM-RoBERTa, CamemBERT, and Dis-
tilBERT, the base-cased configurations are used. AllenAI-
base-4096 configuration used for longformer.

The configuration used for finetuning Language Models
are as follows:

• The BERT and CamemBERT model is 12-layered having
768-hidden layers, 12-heads, and 109M parameters.

• RoBERTa has the same configuration as that of BERT,
except it has 125M parameters.

• XLM-RoBERTa has approximately 270M parameters
with 12-layers, 768-hidden-state, 3072 feed-forward
hidden-state, 8-heads, which is pretrained on Common-
Crawl data in 100 languages.

• DistilBERT has less parameters of 65M, and it is 6-
layered. DistilBERT model is distilled from the BERT-
based configuration.

• Longformer has approximately 149M parameters. Here
4096 represents that the model is pretrained on documents
of maximum length 4096.

All the above-mentioned Language Models are finetuned on
the training dataset for sentence-level sequence labeling. Ev-
ery model is trained separately, and the latest iteration is
stored.

Hyperparameter tuning of Language Models for
Sequence Labeling Task
It was observed that during the inference phase, the output
length was truncated to 128 tokens as it was the default
‘max seq length’ parameter. To preserve the entire token
length, two parameters were used heavily. These two param-
eters are ‘sliding window’ and ‘max seq length’. The slid-
ing window prevents the truncation of sentences by split-
ting the input sequence into multiple windows if it ex-
ceeds the default maximum sequence value. The sliding
window problem is that the contextual information is broken
while predicting, and hence it was not used. Some experi-
ments were carried on with max seq length parameter, and
it was observed that the model was performing better when
max seq length was kept to 350. Other max seq length val-
ues were 128, 256, 300, 400, 450, and 512. The language
models were finetuned by using ‘Simple Transformers’ (Ra-
japakse 2020)2 library and by using ‘Hugging Face’ (Wolf
et al. 2019)3 pretrained models. GEFORCE RTX 2080 Ti
11GB GPU was used to train all the models with a 32GB
primary memory system.

Table 1 depicts the final list of hyperparameters used to
finetune the Language Models on the sequence labeling task.
The ‘adam epsilon’ is the epsilon value to use for adam
optimizer. ‘best model dir’ is the directory where the best
model automatically gets stored after the completion of all
epochs. ‘cache dir’ is where the processed data is stored,

2https://simpletransformers.ai/
3https://huggingface.co/



Hyperparameter Value
adam epsilon 1e-08

best model dir outputs/best model/
cache dir cache/

train custom parameters only False
dataloader num workers 4

do lower case False
early stopping consider epochs False

early stopping delta 0
early stopping metric eval loss

early stopping metric minimize True
early stopping patience 3

encoding null
eval batch size 8

evaluate during training False
evaluate during training silent True
evaluate during training steps 2000

evaluate during training verbose False
fp16 True

gradient accumulation steps 1
learning rate 4e-05

local rank -1
logging steps 50

max grad norm 1.0
max seq length 350

multiprocessing chunksize 500
n gpu 1

no cache False
no save False

num train epochs 50
output dir outputs/

overwrite output dir True
process count 4

reprocess input data True
save best model True

save eval checkpoints True
save model every epoch True

save steps 20000
save optimizer and scheduler True

silent False
train batch size 16

use cached eval features False
use early stopping False

use multiprocessing True
warmup ratio 0.06
warmup steps 2628
weight decay 0

classification report False
labels list B-long, I-long, B-short, I-short, O

lazy loading False
lazy loading start line 0

Table 1: Final hyperparameters list used to finetune Lan-
guage models for Sequence Labeling Task)

which is consumable by PyTorch (Paszke et al. 2019). The
‘train custom parameters only’ is kept False as we are uti-
lizing all the hyperparameters available in Language Mod-
els. The ‘dataloader num workers’ specifies the number of
CPUs which will be used for data processing. As this is a se-
quence labeling task, the ‘cased’ configurations of Language
Models are used, and hence the ‘do lower case’ is kept to be
False. The ‘early stopping metric’ is kept to be the evalua-

tion loss, and the ‘patience’ is kept to be 3. The training pro-
cess avoids evaluation while training. Hence, the parameter
‘evaluate while training’ is kept to be False. ‘fp16’ corre-
sponds to the 16-bits training and sometimes also referred
to as mixed-precision training is kept to True. The ‘gradi-
ent accumulation step’ is kept to 1 and the ‘learning rate’ to
be 4e-05. The training was carried on a single Graphics Pro-
cessing Unit (GPU) system, and so the ‘n gpu’ was fixed to
1. As we don’t want the model to save very frequently and
save the secondary storage space, the ‘save steps’ is kept to
a higher value of 20,000. The training epochs were set to
50, but it was observed that the models were able to train
around 20 epochs. Hence, the training process was stopped
manually as soon as the loss was stagnant and at the low-
est point. The ‘labes list’ corresponds to the target labels
and it was set to [“B-long”, “I-long”, “B-short”, “I-short”,
“O”]. The ‘max seq length’ is one of the hyperparameters
which was finetuned. These are some of the important hy-
perparameters known to have a huge impact on finetuning
Language Models for sequence labeling task. After the final
hyperparameters were computed, all the Language Models
were again finetuned for Sentence Level Sequence Labeling
task to identify acronyms from a given input text.

Ensembling and postprocessing to obtain final
predictions
After all the language models were finetuned on training
data, the ensembling technique was applied. The advantage
of performing ensembling is to construct a robust discrim-
inator or model by using comparatively weaker models. In
this paper, a novel-ensembling approach based on RoBERTa
prioritizing was used. The table 2 shows that the F1-score of
RoBERTa for the development dataset is higher than other
algorithms. The steps are as follows:

1. Initially, all the predictions from six pre-trained language
models were extracted.

2. For each sentence, token level predictions were extracted
for all six models. Hence for each token for every sen-
tence, six predictions were obtained. For simplicity, the
predictions can be from any of the following labels - ‘O’,
‘B-short’, ‘I-short’, ‘B-long’ and ‘I-long’.

3. If all the predictions are ‘O’ and any of the models gives
any predictions from the bouquet of ‘B-short’, ‘I-short’,
‘B-long’ and ‘I-long’, then the prediction other than ‘O’
is considered.

4. If there is a conflict between ‘B-short’, ‘I-short’, ‘B-
long’, and ‘I-long’, then the prediction suggested by
RoBERTa is taken into consideration. But if, in this case,
if RoBERTa’s prediction is ‘O’, then the prediction with
the highest frequency is considered.

The above ensembling technique gave rise to an increase
in recall. The ensembling approach’s limitation is that it pre-
dicted labels having ‘I-short’ and ‘I-long’ as the beginning
tags, which lowered precision for some tokens. To overcome
this problem, the following post-processing rules were ap-
plied:



Algorithm
(hyperparameters finetuned) Precision Recall F-1 Score LONG SHORT

Precision Recall F1-score Precision Recall F1-score
Ensembling + Post Processing (EELM-SLP) 93.35 97.95 95.6 91.43 97.27 94.26 95.27 98.63 96.92

Ensembling Technique 92.36 97.2 94.72 90.9 96.65 93.69 93.81 97.74 95.74
RoBERTa 93.19 91.2 92.18 91.65 92.56 92.1 94.74 89.83 92.22

XLM-RoBERTa 93.05 90.89 91.95 91.49 92 91.75 94.61 89.77 92.12
BERT 92.34 90.88 91.6 90.43 90.27 90.35 94.24 91.48 92.84

CamemBERT 93.45 88.93 91.13 92.32 90.64 90.98 95.58 87.23 91.21
Longformer 93.14 88.59 90.81 90.49 90.2 90.34 95.8 86.97 91.17
DistilBERT 91.04 90.51 90.77 88.47 88.03 88.25 93.6 92.98 93.29

Table 2: Evaluation results for Development Dataset (all values are in percentage)

Algorithm Precision Recall F-1 Score
Ensembling + Post Processing (EELM-SLP) 89.7 94.59 92.08

Ensembling Technique 89.93 93.87 91.86
RoBERTa after hyperparameter tuning 90.26 92.46 91.34

RoBERTa before hyperparameter tuning 90.85 91.73 91.29

Table 3: Evaluation results for Test Dataset (all values are in percentage)

• If at any point of time the prediction starts with ‘I-short’,
then it is replaced as ‘B-short’.

• The pattern ‘O’, ‘I-long’ was replaced with ‘B-long’, ‘I-
long’ to maintain consistency.

By applying the above post-processing rules, the precision
improved the proposed, and hence the proposed EELM-SLP
system surpassed the other individual trained models on the
development dataset.

All the models are trained on 11GB Nividia 2080 Ti GPU
for 20-22 epochs, with each epoch taking around three to
four minutes. Each model took around 90 minutes to train,
and due to early stopping, the training was stopped as soon
as the loss stopped reducing. The proposed architecture is
efficient and can be integrated into an actual production en-
vironment. The prediction pipeline is designed in such a way
that it takes advantage of CPU parallelism. So if the input
contains a batch of sentences, the predictions will be com-
puted in parallel independent batches and then later com-
bined to form in order as they appear in the original para-
graph or list of sentences.

Results and Discussions
The table 2 depicts the evaluation metrics on the devel-
opment dataset. It can be seen that the top-3 perform-
ers among individual language models based on F1-score
are RoBERTa, followed by XLM-RoBERTa, which is fol-
lowed by BERT. The RoBERTa achieves the highest F1-
score of 92.18%, while XLM-RoBERTa achieves the F1-
score of 91.95%. The third best performing algorithm BERT
achieves the F1-score of 91.6%. The ensembling technique
surpasses the hyperparameter finetuned individual Language
Models and achieves a precision of 92.36%, recall of 97.2%,
and F1-score of 95.6%. However, the proposed approach of
Effective Ensembling of Language Models for Sequence La-
beling Problem (EELM-SLP) achieves the highest F1-score

of 95.6% recorded on development data. It can be clearly
seen that the proposed approach surpasses other individual
language models by quite a considerable margin. For all the
individual finetuned models and the proposed approach, the
class scores are also computed, namely precision, recall, and
F1-score for ‘short’ and ‘long’ labels.

In table 3, the evaluation on the test dataset is presented
on standard evaluation metrics like precision, recall, and F1-
score. Initially, the test dataset was evaluated on RoBERTa
finetuned model before finetuning. This initial evaluation
resulted in precision, recall, and F1-score to be 90.85%,
91.73%, and 91.29%, respectively. The RoBERTa was then
finetuned after hyperparameter tuning, which further ac-
celerated the metrics. The hyperparameter tuned RoBERTa
achieved the precision of 90.26%, recall of 92.46%, and F1-
score of 91.34%. One of the significant highlights is the
results obtained after applying the ensembling technique,
which improved the F1-score from 91.34% to 91.86%. Fi-
nally, the highest F1-score was achieved after the applica-
tion of post-processing. The final proposed system achieved
an F1-score of 92.08%, precision of 89.7%, and recall of
94.59%.

Conclusion and Future Scope
In this paper, an Effective Ensembling of Language Models
for Sequence Labeling (EELM-SLP) is proposed. The en-
sembling technique’s importance can be clearly seen based
on the development and test dataset results. The final model
achieves a precision of 93.35%, recall of 97.95% and F1-
score of 95.6% on the development dataset and precision
of 89.7%, recall of 94.59% and F1-score of 92.08% on the
test set. There is an improvement on all the three metrics of
precision, recall, and F1-score for the proposed approach on
the development dataset. Although the recall and F1-score
are highest for the test dataset, the precision is lowered. This



might be due to the introduction of false-positives while en-
sembling and post-processing step. On the one hand, the en-
sembling and post-processing step increased the recall and
F1-score, but on the other hand, it lowered the precision.
Hence, the post-processing can be finetuned in-depth. Fur-
ther, this paper uses all the language models in their ‘base’
configuration and not ‘large’ configuration. In the future, ex-
periments can be carried on ‘large’ configuration based lan-
guage models, which might improve the scores.
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